Struct chrono::naive::time::NaiveTime
[−]
[src]
pub struct NaiveTime { // some fields omitted }
ISO 8601 time without timezone. Allows for the nanosecond precision and optional leap second representation.
Leap second WHAT?
Since 1960s, the manmade atomic clock has been so accurate that it is much more accurate than Earth's own motion. It became desirable to define the civil time in terms of the atomic clock, but that risks the desynchronization of the civil time from Earth. To account for this, the designers of the Coordinated Universal Time (UTC) made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time. When the mean solar day is longer than the ideal (86,400 seconds), the error slowly accumulates and it is necessary to add a leap second to slow the UTC down a bit. (We may also remove a second to speed the UTC up a bit, but it never happened.) The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC.
Fast forward to the 21st century, we have seen 26 leap seconds from January 1972 to December 2015. Yes, 26 seconds. Probably you can read this paragraph within 26 seconds. But those 26 seconds, and possibly more in the future, are never predictable, and whether to add a leap second or not is known only before 6 months. Internet-based clocks (via NTP) do account for known leap seconds, but the system API normally doesn't (and often can't, with no network connection) and there is no reliable way to retrieve leap second information.
Chrono does not try to accurately implement leap seconds; it is impossible.
Rather, it allows for leap seconds but behaves as if there are no other leap seconds.
Various time arithmetics will ignore any possible leap second(s)
except when the operand were actually a leap second.
The leap second is indicated via fractional seconds more than 1 second,
so values like NaiveTime::from_hms_milli(23, 56, 4, 1_005)
are allowed;
that value would mean 5ms after the beginning of a leap second following 23:56:04.
Parsing and formatting will correctly handle times that look like leap seconds,
and you can then conveniently ignore leap seconds if you are not prepared for them.
If you cannot tolerate this behavior,
you must use a separate TimeZone
for the International Atomic Time (TAI).
TAI is like UTC but has no leap seconds, and thus slightly differs from UTC.
Chrono 0.2 does not provide such implementation, but it is planned for 0.3.
Methods
impl NaiveTime
fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute and second.
No leap second is allowed here;
use NaiveTime::from_hms_*
methods with a subsecond parameter instead.
Panics on invalid hour, minute and/or second.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms(23, 56, 4); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 0);
fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute and second.
No leap second is allowed here;
use NaiveTime::from_hms_*_opt
methods with a subsecond parameter instead.
Returns None
on invalid hour, minute and/or second.
Example
use chrono::NaiveTime; let hms = |h,m,s| NaiveTime::from_hms_opt(h, m, s); assert!(hms(0, 0, 0).is_some()); assert!(hms(23, 59, 59).is_some()); assert!(hms(24, 0, 0).is_none()); assert!(hms(23, 60, 0).is_none()); assert!(hms(23, 59, 60).is_none());
fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or millisecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms_milli(23, 56, 4, 12); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_000_000);
fn from_hms_milli_opt(hour: u32, min: u32, sec: u32, milli: u32) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or millisecond.
Example
use chrono::NaiveTime; let hmsm = |h,m,s,milli| NaiveTime::from_hms_milli_opt(h, m, s, milli); assert!(hmsm(0, 0, 0, 0).is_some()); assert!(hmsm(23, 59, 59, 999).is_some()); assert!(hmsm(23, 59, 59, 1_999).is_some()); // a leap second following 23:59:59 assert!(hmsm(24, 0, 0, 0).is_none()); assert!(hmsm(23, 60, 0, 0).is_none()); assert!(hmsm(23, 59, 60, 0).is_none()); assert!(hmsm(23, 59, 59, 2_000).is_none());
fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or microsecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms_micro(23, 56, 4, 12_345); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_345_000);
fn from_hms_micro_opt(hour: u32, min: u32, sec: u32, micro: u32) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or microsecond.
Example
use chrono::NaiveTime; let hmsu = |h,m,s,micro| NaiveTime::from_hms_micro_opt(h, m, s, micro); assert!(hmsu(0, 0, 0, 0).is_some()); assert!(hmsu(23, 59, 59, 999_999).is_some()); assert!(hmsu(23, 59, 59, 1_999_999).is_some()); // a leap second following 23:59:59 assert!(hmsu(24, 0, 0, 0).is_none()); assert!(hmsu(23, 60, 0, 0).is_none()); assert!(hmsu(23, 59, 60, 0).is_none()); assert!(hmsu(23, 59, 59, 2_000_000).is_none());
fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime
Makes a new NaiveTime
from hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or nanosecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_345_678);
fn from_hms_nano_opt(hour: u32, min: u32, sec: u32, nano: u32) -> Option<NaiveTime>
Makes a new NaiveTime
from hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or nanosecond.
Example
use chrono::NaiveTime; let hmsn = |h,m,s,nano| NaiveTime::from_hms_nano_opt(h, m, s, nano); assert!(hmsn(0, 0, 0, 0).is_some()); assert!(hmsn(23, 59, 59, 999_999_999).is_some()); assert!(hmsn(23, 59, 59, 1_999_999_999).is_some()); // a leap second following 23:59:59 assert!(hmsn(24, 0, 0, 0).is_none()); assert!(hmsn(23, 60, 0, 0).is_none()); assert!(hmsn(23, 59, 60, 0).is_none()); assert!(hmsn(23, 59, 59, 2_000_000_000).is_none());
fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime
Makes a new NaiveTime
from the number of seconds since midnight and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Panics on invalid number of seconds and/or nanosecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_num_seconds_from_midnight(86164, 12_345_678); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_345_678);
fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option<NaiveTime>
Makes a new NaiveTime
from the number of seconds since midnight and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Returns None
on invalid number of seconds and/or nanosecond.
Example
use chrono::NaiveTime; let secs = |secs,nano| NaiveTime::from_num_seconds_from_midnight_opt(secs, nano); assert!(secs(0, 0).is_some()); assert!(secs(86399, 999_999_999).is_some()); assert!(secs(86399, 1_999_999_999).is_some()); // a leap second following 23:59:59 assert!(secs(86400, 0).is_none()); assert!(secs(86399, 2_000_000_000).is_none());
fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime>
Parses a string with the specified format string and returns a new NaiveTime
.
See the format::strftime
module
on the supported escape sequences.
Example
use chrono::NaiveTime; assert_eq!(NaiveTime::parse_from_str("23:56:04", "%H:%M:%S"), Ok(NaiveTime::from_hms(23, 56, 4))); assert_eq!(NaiveTime::parse_from_str("pm012345.6789", "%p%I%M%S%.f"), Ok(NaiveTime::from_hms_micro(13, 23, 45, 678_900)));
Date and offset is ignored for the purpose of parsing.
assert_eq!(NaiveTime::parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), Ok(NaiveTime::from_hms(12, 34, 56)));
Leap seconds are correctly handled by
treating any time of the form hh:mm:60
as a leap second.
(This equally applies to the formatting, so the round trip is possible.)
assert_eq!(NaiveTime::parse_from_str("08:59:60.123", "%H:%M:%S%.f"), Ok(NaiveTime::from_hms_milli(8, 59, 59, 1_123)));
Missing seconds are assumed to be zero, but out-of-bound times or insufficient fields are errors otherwise.
assert_eq!(NaiveTime::parse_from_str("7:15", "%H:%M"), Ok(NaiveTime::from_hms(7, 15, 0))); assert!(NaiveTime::parse_from_str("04m33s", "%Mm%Ss").is_err()); assert!(NaiveTime::parse_from_str("12", "%H").is_err()); assert!(NaiveTime::parse_from_str("17:60", "%H:%M").is_err()); assert!(NaiveTime::parse_from_str("24:00:00", "%H:%M:%S").is_err());
All parsed fields should be consistent to each other, otherwise it's an error.
Here %H
is for 24-hour clocks, unlike %I
,
and thus can be independently determined without AM/PM.
assert!(NaiveTime::parse_from_str("13:07 AM", "%H:%M %p").is_err());
fn format_with_items<'a, I>(&self, items: I) -> DelayedFormat<I> where I: Iterator<Item=Item<'a>> + Clone
Formats the time with the specified formatting items.
Otherwise it is same to the ordinary format
method.
The Iterator
of items should be Clone
able,
since the resulting DelayedFormat
value may be formatted multiple times.
Example
use chrono::NaiveTime; use chrono::format::strftime::StrftimeItems; let fmt = StrftimeItems::new("%H:%M:%S"); let t = NaiveTime::from_hms(23, 56, 4); assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04"); assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
Formats the time with the specified format string.
See the format::strftime
module
on the supported escape sequences.
This returns a DelayedFormat
,
which gets converted to a string only when actual formatting happens.
You may use the to_string
method to get a String
,
or just feed it into print!
and other formatting macros.
(In this way it avoids the redundant memory allocation.)
A wrong format string does not issue an error immediately.
Rather, converting or formatting the DelayedFormat
fails.
You are recommended to immediately use DelayedFormat
for this reason.
Example
use chrono::NaiveTime; let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04"); assert_eq!(t.format("%H:%M:%S%.6f").to_string(), "23:56:04.012345"); assert_eq!(t.format("%-I:%M %p").to_string(), "11:56 PM");